ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан параллелограмм ABCD  (AB < BC).  Докажите, что описанные окружности треугольников APQ для всевозможных точек P и Q, выбранных на сторонах BC и CD соответственно так, что  CP = CQ,  имеют общую точку, отличную от A.

   Решение

Задачи

Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 603]      



Задача 66153

Темы:   [ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10

Неравнобедренный треугольник ABC, в котором  ∠C = 60°,  вписан в окружность Ω. На биссектрисе угла A выбрана точка A', а на биссектрисе угла B – точка B' так, что  AB' || BC  и  B'A || AC.  Прямая A'B' пересекает Ω в точках D и E. Докажите, что треугольник CDE равнобедренный.

Прислать комментарий     Решение

Задача 66305

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Трапеции (прочее) ]
[ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
[ Гомотетия помогает решить задачу ]
[ Замечательное свойство трапеции ]
Сложность: 4
Классы: 8,9

Автор: Tran Quang Hung

Вокруг квадрата ABCD описана окружность. Точка P лежит на дуге CD этой окружности, не содержащей других вершин квадрата. Прямые PA, PB пересекают диагонали BD, AC соответственно в точках K, L. Точки M, N – проекции K, L соответственно на CD, а Q – точка пересечения прямых KN и ML. Докажите, что прямая PQ делит отрезок AB пополам.

Прислать комментарий     Решение

Задача 102441

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9

Пусть M – точка пересечения диагоналей выпуклого четырёхугольника ABCD, в котором стороны AB, AD и BC равны между собой.
Найдите угол CMD, если известно, что  DM = MC,  а  ∠CAB ≠ ∠DBA.

Прислать комментарий     Решение

Задача 102442

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC равные стороны AB и CB продолжены за точку B и на этих продолжениях взяты соответственно точки D и E. Отрезки AE, ED и DC равны между собой, а  ∠BED ≠ ∠BDE.  Найдите угол ABE.

Прислать комментарий     Решение

Задача 108224

Темы:   [ Диаметр, основные свойства ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Параллелограммы (прочее) ]
Сложность: 4
Классы: 7,8,9

Дан параллелограмм ABCD  (AB < BC).  Докажите, что описанные окружности треугольников APQ для всевозможных точек P и Q, выбранных на сторонах BC и CD соответственно так, что  CP = CQ,  имеют общую точку, отличную от A.

Прислать комментарий     Решение

Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .