ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Рёбра прямоугольного параллелепипеда равны a , b и c . Найдите угол между диагональю параллелепипеда и скрещивающейся с ней диагональю грани со сторонами a и b .

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 86989

Темы:   [ Скалярное произведение ]
[ Векторы (прочее) ]
Сложность: 3
Классы: 8,9

Высота PO правильной четырёхугольной пирамиды PABCD равна 4, а сторона основания ABCD равна 6. Точки M и K – середины отрезков BC и CD . Найдите радиус шара, вписанного в пирамиду PMKC .
Прислать комментарий     Решение


Задача 87014

Темы:   [ Свойства сечений ]
[ Скалярное произведение ]
[ Частные случаи параллелепипедов (прочее) ]
Сложность: 3
Классы: 8,9

Через диагональ B1D1 грани A1B1C1D1 и середину ребра DC правильной четырёхугольной призмы ABCDA1B1C1D1 проведена плоскость. Найдите площадь сечения призмы этой плоскостью, если AB = a , CC1 = 2a .
Прислать комментарий     Решение


Задача 109291

Темы:   [ Прямоугольные параллелепипеды ]
[ Скалярное произведение ]
Сложность: 3
Классы: 10,11

Рёбра прямоугольного параллелепипеда равны a , b и c . Найдите углы между его диагоналями.
Прислать комментарий     Решение


Задача 109292

Темы:   [ Прямоугольные параллелепипеды ]
[ Скалярное произведение ]
Сложность: 3
Классы: 10,11

Рёбра прямоугольного параллелепипеда равны a , b и c . Найдите угол между диагональю параллелепипеда и скрещивающейся с ней диагональю грани со сторонами a и b .
Прислать комментарий     Решение


Задача 109293

Темы:   [ Прямоугольные параллелепипеды ]
[ Скалярное произведение ]
Сложность: 3
Классы: 10,11

Рёбра прямоугольного параллелепипеда равны a , b и c . Найдите угол между скрещивающимися диагоналями двух граней с общим ребром a .
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .