ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, ..., an с разностью 2, обладающей свойством:    – простое при всех  k = 1, 2, ..., n?

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 133]      



Задача 76420

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
[ Системы алгебраических нелинейных уравнений ]
Сложность: 3+
Классы: 9,10

Составить две прогрессии: арифметическую и геометрическую, каждую из четырёх членов; при этом, если сложить одноимённые члены обеих прогрессий, то должны получиться числа: 27, 27, 39, 87.

Прислать комментарий     Решение

Задача 78477

Темы:   [ Арифметическая прогрессия ]
[ Десятичная система счисления ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Первый член и разность арифметической прогрессии — натуральные числа. Доказать, что найдётся такой член прогрессии, в записи которого участвует цифра 9.
Прислать комментарий     Решение


Задача 110093

Темы:   [ Арифметическая прогрессия ]
[ Деление с остатком ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 9,10

Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, ..., an с разностью 2, обладающей свойством:    – простое при всех  k = 1, 2, ..., n?

Прислать комментарий     Решение

Задача 105215

Темы:   [ Арифметическая прогрессия ]
[ Тождественные преобразования (тригонометрия) ]
[ Тригонометрические неравенства ]
[ Перебор случаев ]
Сложность: 3+
Классы: 9,10,11

Какие значения может принимать разность возрастающей арифметической прогрессии a1, a2,..., a5, все члены которой принадлежат отрезку [0; 3π/2], если числа cos a1, cos a2, cos a3, а также числа sin a3, sin a4 и sin a5 в некотором порядке тоже образуют арифметические прогрессии.

Прислать комментарий     Решение

Задача 86119

Темы:   [ Арифметическая прогрессия ]
[ Уравнения с модулями ]
Сложность: 4-
Классы: 9,10,11

Сумма модулей членов конечной арифметической прогрессии равна 100. Если все ее члены увеличить на 1 или все ее члены увеличить на 2, то в обоих случаях сумма модулей членов полученной прогрессии будет также равна 100. Какие значения при этих условиях может принимать величина n2d, где d - разность прогрессии, а n - число ее членов?
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 133]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .