Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 60]
|
|
Сложность: 4 Классы: 10,11
|
Сторона основания
ABCD правильной пирамиды
SABCD равна 2.
Плоскость
α , параллельная прямым
SC и
AD ,
пересекает пирамиду так, что в сечение можно вписать окружность,
причём периметр сечения равен
. Найдите:
1) в каком отношении плоскость
α делит рёбра пирамиды;
2) отношение объёмов частей, на которые плоскость
α
разбивает пирамиду;
3) расстояние от центра описанной около пирамиды сферы до
плоскости
α .
|
|
Сложность: 4 Классы: 10,11
|
Сторона основания
ABCD правильной пирамиды
SABCD равна 2.
Плоскость
α , параллельная прямым
SB и
AD ,
пересекает пирамиду так, что в сечение можно вписать окружность,
причём периметр сечения равен
. Найдите:
1) в каком отношении плоскость
α делит рёбра пирамиды;
2) отношение объёмов частей, на которые плоскость
α
разбивает пирамиду;
3) расстояние от центра описанной около пирамиды сферы до
плоскости
α .
|
|
Сложность: 4 Классы: 10,11
|
Сторона основания
ABCD правильной пирамиды
SABCD равна 2.
Плоскость
α , параллельная прямым
SB и
AD ,
пересекает пирамиду так, что в сечение можно вписать окружность,
радиуса
. Найдите:
1) в каком отношении плоскость
α делит рёбра пирамиды;
2) отношение объёмов частей, на которые плоскость
α
разбивает пирамиду;
3) расстояние от центра описанной около пирамиды сферы до
плоскости
α .
|
|
Сложность: 4 Классы: 10,11
|
Сторона основания
ABCD правильной пирамиды
SABCD равна 2.
Плоскость
α , параллельная прямым
SC и
AD ,
пересекает пирамиду так, что в сечение можно вписать окружность
радиуса
. Найдите:
1) в каком отношении плоскость
α делит рёбра пирамиды;
2) отношение объёмов частей, на которые плоскость
α
разбивает пирамиду;
3) расстояние от центра описанной около пирамиды сферы до
плоскости
α .
|
|
Сложность: 3 Классы: 10,11
|
Сторона основания правильной четырёхугольной пирамиды равна
a ,
высота пирамиды равна
2
a . Найдите радиусы описанной и вписанной
сфер.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 60]