ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Равные треугольники. Признаки равенства
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N. Докажите, что радиус описанной окружности треугольника MIN вдвое больше радиуса описанной окружности треугольника ABC. Решение |
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 352]
Диагональ AC трапеции ABCD равна боковой стороне CD.
Прямая, симметричная BD относительно AD, пересекает прямую AC в точке E.
На дугах AB и BC окружности, описанной около треугольника ABC, выбраны соответственно точки K и L так, что прямые KL и AC параллельны.
На сторонах AB, BC, CA треугольника ABC выбраны точки P, Q, R соответственно таким образом, что AP = CQ и четырёхугольник RPBQ– вписанный. Касательные к описанной окружности треугольника ABC в точках A и C пересекают прямые RP и RQ в точках X и Y соответственно. Докажите, что RX = RY.
Назовём два неравных треугольника похожими, если можно обозначить их ABC и A'B'C' так, чтобы выполнялись равенства AB = A'B', AC = A'C' и
Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N. Докажите, что радиус описанной окружности треугольника MIN вдвое больше радиуса описанной окружности треугольника ABC.
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 352] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|