Страница:
<< 1 2 3 4
5 6 >> [Всего задач: 30]
Из точки O на плоскости выходят 2n прямых. Могут ли они
служить серединными перпендикулярами к сторонам некоторого
2n-угольника?
На плоскости даны прямые l1, l2, ..., l2n,
пересекающиеся в одной точке. Блоха сидит в некоторой точке M
плоскости и прыгает через прямую l1, попадая в точку M1,
причём M и M1 симметричны относительно прямой l1,
далее — через прямую l2 и т.д. Докажите, что если через
2n прыжков блоха оказалась в точке М, то, начиная движение из
любой точки плоскости, через 2n прыжков блоха окажется на
прежнем месте.
|
|
Сложность: 5- Классы: 8,9,10,11
|
Нарисуйте многоугольник и точку на его границе так,
что любая прямая, проходящая через эту точку, делит площадь этого
многоугольника пополам.
|
|
Сложность: 4- Классы: 7,8,9
|
При каком наименьшем
n существует
n -угольник,
который можно разрезать на треугольник, четырехугольник, ...,
2006-угольник?
|
|
Сложность: 4- Классы: 8,9,10
|
Длины сторон многоугольника равны a1, a2, ..., an. Квадратный трёхчлен f(x) таков, что f(a1) = f(a2 + ... + an).
Докажите, что если A – сумма длин нескольких сторон многоугольника, B – сумма длин остальных его сторон, то f(A) = f(B).
Страница:
<< 1 2 3 4
5 6 >> [Всего задач: 30]