ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Алгебра и арифметика
>>
Алгебраические неравенства и системы неравенств
>>
Классические неравенства
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны положительные числа a1, a2, ..., an. Известно, что a1 + a2 + ... + an ≤ ½. Докажите, что (1 + a1)(1 + a2)...(1 + an) < 2. Решение |
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 258]
Дан квадратный трёхчлен f(x) = x² + ax + b. Уравнение f(f(x)) = 0 имеет четыре различных действительных корня, сумма двух из которых равна –1. Докажите, что b ≤ – ¼.
Некоторые натуральные числа отмечены. Известно, что на каждом отрезке числовой прямой длины 1999 есть отмеченное число.
Даны положительные числа a1, a2, ..., an. Известно, что a1 + a2 + ... + an ≤ ½. Докажите, что (1 + a1)(1 + a2)...(1 + an) < 2.
Квадратная доска разделена на n² прямоугольных клеток n – 1 горизонтальными и n – 1 вертикальными прямыми. Клетки раскрашены в шахматном порядке. Известно, что на одной диагонали все n клеток чёрные и квадратные. Докажите, что общая площадь всех чёрных клеток доски не меньше общей площади белых.
Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки,
лежащие на соседних гранях, соединили отрезком.
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 258] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|