ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На сторонах AB, BC и CA треугольника ABC (или
на их продолжениях) взяты точки C1, A1 и B1 так, что ∠(CC1, AB) = ∠(AA1, BC) = ∠(BB1, CA) = α. Прямые AA1 и BB1, BB1 и CC1, CC1 и AA1 пересекаются в точках C', A', B' соответственно. Докажите, что: В треугольнике $ABC$ ($a>b>c$) указаны инцентр $I$, а также точки $K$ и $N$ касания вписанной окружности со сторонами $BC$ и $AC$ соответственно. Проведя не более трёх линий одной линейкой, постройте отрезок длины $a-c$. Окружность S касается окружностей S1 и S2 в
точках A1 и A2; B — точка окружности S, а K1
и K2 — вторые точки пересечения прямых A1B и A2B с
окружностями S1 и S2. Докажите, что если прямая K1K2
касается окружности S1, то она касается и окружности S2.
На плоскости даны точки A(1;2) , B(2;1) , C(3;-3) , D(0;0) . Они являются вершинами выпуклого четырёхугольника ABCD . В каком отношении точка пересечения его диагоналей делит диагональ AC ? Окружности радиусов ta, tb, tc касаются внутренним образом описанной окружности треугольника ABC в его вершинах A, B, C и касаются друг друга внешним образом. Докажите, что
ta =
Пусть O — центр описанной окружности
(неправильного) треугольника ABC, M — точка пересечения медиан.
Докажите, что прямая OM перпендикулярна медиане CC1 тогда и только
тогда, когда
a2 + b2 = 2c2.
Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30°. Найдите радиусы сфер. Даны четыре окружности
S1, S2, S3 и S4, причем
окружности Si и Si + 1 касаются внешним образом для i = 1, 2, 3, 4
(S5 = S1). Докажите, что точки касания образуют вписанный
четырехугольник.
Факториальная система счисления. Докажите, что каждое натуральное число n может быть единственным образом представлено в виде
n = a1 . 1! + a2 . 2! + a3 . 3! +...,
где
0
Для определения эффективной температуры звёзд используют закон Стефана — Больцмана, согласно которому мощность излучения нагретого тела прямо пропорциональна площади его поверхности и четвёртой степени температуры: R=σ ST4 , где σ = 5,7· 10-8 — числовой коэффициент, площадь измеряется в квадратных метрах, температура — в градусах Кельвина, а мощность — в ваттах. Известно, что некоторая звезда имеет площадь S = |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 45]
Для одного из предприятий-монополистов зависимость объёма спроса на продукцию q (единиц в месяц) от её цены p (тыс. руб.) задаётся формулой: q = 180-10p . Определите максимальный уровень цены p (в тыс. руб.), при котором значение выручки предприятия за месяц r = q· p составит не менее 720 тыс. руб.
Для определения эффективной температуры звёзд используют закон Стефана — Больцмана, согласно которому мощность излучения нагретого тела прямо пропорциональна площади его поверхности и четвёртой степени температуры: P=σ ST4 , где σ = 5,7· 10-8 — числовой коэффициент, площадь измеряется в квадратных метрах, температура — в градусах Кельвина, а мощность — в ваттах. Известно, что некоторая звезда имеет площадь S =
Для определения эффективной температуры звёзд используют закон Стефана — Больцмана, согласно которому мощность излучения нагретого тела прямо пропорциональна площади его поверхности и четвёртой степени температуры: Ropf; = σ ST4 , где σ = 5,7· 10-8 — числовой коэффициент, площадь измеряется в квадратных метрах, температура — в градусах Кельвина, а мощность — в ваттах. Известно, что некоторая звезда имеет площадь S =
Для определения эффективной температуры звёзд используют закон Стефана — Больцмана, согласно которому мощность излучения нагретого тела прямо пропорциональна площади его поверхности и четвёртой степени температуры: Ropf; = σ ST4 , где σ = 5,7· 10-8 — числовой коэффициент, площадь измеряется в квадратных метрах, температура — в градусах Кельвина, а мощность — в ваттах. Известно, что некоторая звезда имеет площадь S =
Для определения эффективной температуры звёзд используют закон Стефана — Больцмана, согласно которому мощность излучения нагретого тела прямо пропорциональна площади его поверхности и четвёртой степени температуры: R=σ ST4 , где σ = 5,7· 10-8 — числовой коэффициент, площадь измеряется в квадратных метрах, температура — в градусах Кельвина, а мощность — в ваттах. Известно, что некоторая звезда имеет площадь S =
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 45]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке