ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Алгебра и арифметика
>>
Алгебраические неравенства и системы неравенств
>>
Классические неравенства
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точка M лежит вне окружности с центром O. Прямая OM пересекает окружность в точках A и B, прямая, проходящая через точку M, касается окружности в точке C, точка H – проекция точки C на AB, а перпендикуляр к AB, восставленный в точке O, пересекает окружность в точке P. Известно, что MA = a и MB = b. Найдите MO, MC, MH, MP и расположите найденные значения по возрастанию. Решение |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 258]
Найдите наименьшую величину выражения + + ... + .
Доказать неравенство   (a1, a2, ..., an – положительные числа).
a, b, c – любые положительные числа. Доказать, что + + ≥ 3/2.
Рассматриваются такие наборы действительных чисел {x1, x2, x3, ..., x20}, заключённых между 0 и 1, что x1x2x3...x20 = (1 – x1)(1 – x2)(1 – x3)...(1 – x20). Найдите среди этих наборов такой, для которого значение x1x2x3...x20 максимально.
Точка M лежит вне окружности с центром O. Прямая OM пересекает окружность в точках A и B, прямая, проходящая через точку M, касается окружности в точке C, точка H – проекция точки C на AB, а перпендикуляр к AB, восставленный в точке O, пересекает окружность в точке P. Известно, что MA = a и MB = b. Найдите MO, MC, MH, MP и расположите найденные значения по возрастанию.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 258] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|