Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 70]
|
|
Сложность: 4- Классы: 9,10,11
|
Могут ли все числа 1, 2, 3 ... 100 быть членами 12 геометрических прогрессий?
Имеется 4
n положительных чисел, таких, что из любых четырёх попарно различных
можно составить геометрическую прогрессию. Доказать, что среди этих чисел
найдется
n одинаковых.
Для n = 1, 2, 3 будем называть числом n-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию
1, (n + 2), (n + 2)², ..., либо является суммой нескольких различных её членов. Докажите, что любое натуральное число можно представить в виде суммы числа первого типа, числа второго типа и числа третьего типа.
|
|
Сложность: 2 Классы: 10,11
|
Последовательность из двух различных чисел продолжили двумя способами: так, чтобы
получилась геометрическая прогрессия, и так, чтобы получилась арифметическая прогрессия. При
этом третий член геометрической прогрессии совпал с десятым членом арифметической прогрессии.
А с каким членом арифметической прогрессии совпал четвёртый член геометрической
прогрессии?
|
|
Сложность: 2+ Классы: 6,7,8
|
Сколько существует целых чисел от 0 до 999999, в десятичной записи которых нет двух стоящих рядом одинаковых цифр?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 70]