ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

На боковых рёбрах PA , PB , PC (или на их продолжениях) треугольной пирамиды PABC взяты точки M , N , K соответственно. Докажите, что отношение объёмов пирамид PMNK и PABC равно

· · .

Вниз   Решение


На плоскости нарисованы n > 2 различных векторов  a1, a2, ..., an  с равными длинами. Оказалось, что все векторы  –a1 + a2 + ... + an,
a1a2 + a3 + ... + ana1 + a2 + ... + an–1an   также имеют равные длины. Докажите, что  a1 + a2 + ... + an = 0.

ВверхВниз   Решение


Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций  f1(x),  f2(x), ...,  fN(x), композициями которых можно записать любой из них (например,  P1(x) =  f2(f1(f2(x))))?

ВверхВниз   Решение


Точка M принадлежит ребру CD параллелепипеда ABCDA1B1C1D1 , причём CM:MD = 1:2 . Постройте сечение параллелепипеда плоскостью, проходящей через точку M параллельно прямым DB и AC1 . В каком отношении эта плоскость делит диагональ A1C параллелепипеда?

ВверхВниз   Решение


Две окружности, пересекающиеся в точке A, касаются окружности (или прямой) S1 в точках B1 и C1, а окружности (или прямой) S2 в точках B2 и C2 (причем касание в B2 и C2 такое же, как в B1 и C1). Докажите, что окружности, описанные вокруг треугольников AB1C1 и AB2C2, касаются друг друга.

ВверхВниз   Решение


Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD.

ВверхВниз   Решение


В классе 30 человек. Может ли быть так, что 9 из них имеют по 3 друга (в этом классе), 11 – по 4 друга, а 10 – по 5 друзей?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 123]      



Задача 30419

Тема:   [ Степень вершины ]
Сложность: 2
Классы: 6,7

В государстве 100 городов, и из каждого из них выходит 4 дороги. Сколько всего дорог в государстве?

Прислать комментарий     Решение

Задача 30420

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

В классе 30 человек. Может ли быть так, что 9 из них имеют по 3 друга (в этом классе), 11 – по 4 друга, а 10 – по 5 друзей?

Прислать комментарий     Решение

Задача 30421

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8

В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы было четыре телефона, каждый из которых соединен с тремя другими, восемь телефонов, каждый из которых соединен с шестью, и три телефона, каждый из которых соединен с пятью другими?

Прислать комментарий     Решение

Задача 30780

Тема:   [ Степень вершины ]
Сложность: 2
Классы: 6,7

Докажите, что не существует графа без петель и кратных рёбер с пятью вершинами, степени которых равны 4, 4, 4, 4, 2.

Прислать комментарий     Решение

Задача 30418

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7

В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединён ровно с пятью другими?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 123]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .