Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Если  a ≡ b (mod m)  и  c ≡ d (mod m),  то  a – c ≡ b – d (mod m).

Вниз   Решение


Дан тетраэдр AB С D , в котором AB = 6 , AC = 7 , AD = 3 , BC = 8 , BD = 4 , CD = 5 . Найдите CM , где M – точка пересечения медиан грани ADB .

ВверхВниз   Решение


Даны квадратные трёхчлены  f1(x),  f2(x), ...,  f100(x) с одинаковыми коэффициентами при x², одинаковыми коэффициентами при x, но различными свободными членами; у каждого из них есть по два корня. У каждого трёхчлена fi(x) выбрали один корень и обозначили его через xi. Какие значения может принимать сумма  f2(x1) + f3(x2) + ... + f100(x99) + f1(x100)?

ВверхВниз   Решение


Автор: Фольклор

Найдите наибольшее значение выражения  x²yy²x,  если  0 ≤ x ≤ 1  и  0 ≤ y ≤ 1.

ВверхВниз   Решение


Даны 10 чисел:  а1 < а2 < ... < а10.  Сравните среднее арифметическое этих чисел со средним арифметическим первых шести чисел.

ВверхВниз   Решение


Профессор Тестер проводит серию тестов, на основании которых он выставляет испытуемому средний балл. Закончив отвечать, Джон понял, что если бы он получил за последний тест 97 очков, то его средний балл составил бы 90; а если бы он получил за последний тест всего 73 очка, то его средний балл составил бы 87. Сколько тестов в серии профессора Тестера?

ВверхВниз   Решение


Какое число нужно добавить к числу  (n² – 1)1000(n² + 1)1001,  чтобы результат делился на n?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 606]      



Задача 30589

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 7,8

Если  a ≡ b (mod m)  и  c ≡ d (mod m),  то  a – c ≡ b – d (mod m).

Прислать комментарий     Решение

Задача 30590

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 7,8

Если  a ≡ b (mod m)  и  c ≡ d (mod m),  то  ac ≡ bd (mod m).

Прислать комментарий     Решение

Задача 30591

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 7,8

Если  a ≡ b (mod m),  n – натуральное число, то  an ≡ bn (mod m).

Прислать комментарий     Решение

Задача 30593

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 2+
Классы: 7,8,9

Найдите остаток от деления 6100 на 7.

Прислать комментарий     Решение

Задача 30602

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 8,9

Какое число нужно добавить к числу  (n² – 1)1000(n² + 1)1001,  чтобы результат делился на n?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .