ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Обозначим через k произведение нескольких (больше одного) первых простых чисел.
Докажите, что число   а)  k – 1;   б)  k + 1  не является точным квадратом.

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 201]      



Задача 107740

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Простые числа и их свойства ]
Сложность: 3
Классы: 8,9

Известно, что корни уравнения  x² + px + q = 0  – целые числа, а p и q – простые числа. Найдите p и q.

Прислать комментарий     Решение

Задача 108743

Темы:   [ Деление с остатком ]
[ Простые числа и их свойства ]
Сложность: 3
Классы: 7,8,9

Доказать, что остаток от деления простого числа на 30 – простое число или единица.

Прислать комментарий     Решение

Задача 115998

Темы:   [ Разложение на множители ]
[ Простые числа и их свойства ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Докажите, что ни при каких натуральных значениях x и y число  x8x7y + x6y² – ... – xy7 + y8  не является простым.

Прислать комментарий     Решение

Задача 30605

Темы:   [ Деление с остатком ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 8,9

Обозначим через k произведение нескольких (больше одного) первых простых чисел.
Докажите, что число   а)  k – 1;   б)  k + 1  не является точным квадратом.

Прислать комментарий     Решение

Задача 31256

Темы:   [ Арифметика остатков (прочее) ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 6,7,8

Доказать, что n-е простое число больше 3n при  n > 12.

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .