ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что  221989 – 1  делится на 17.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 606]      



Задача 31249

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Доказать, что  (2n – 1)n – 3  делится на  2n – 3  при любом n.

Прислать комментарий     Решение

Задача 31250

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Доказать, что  n³ + 5n  делится на 6 при любом целом n.

Прислать комментарий     Решение

Задача 31252

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 6,7,8

x² ≡ y² (mod 239).  Доказать, что  xy  или  x ≡ – y.

Прислать комментарий     Решение

Задача 31253

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 6,7,8

Доказать, что  221989 – 1  делится на 17.

Прислать комментарий     Решение

Задача 31266

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Найти   a) 3 последние цифры;   б) 6 последних цифр числа  1999 + 2999 + ... + (106 – 1)999.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .