Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 71]
|
|
Сложность: 3- Классы: 7,8,9
|
Существует ли выпуклый 1978-угольник, у которого все углы выражаются целым числом градусов?
Через точку на плоскости провели 10 прямых, после чего плоскость разрезали по этим прямым на углы.
Докажите, что хотя бы один из этих углов меньше 20°.
|
|
Сложность: 3 Классы: 7,8,9
|
Окружность покрыта несколькими дугами. Эти дуги могут налегать
друг на друга, но ни одна из них не покрывает окружность целиком.
Доказать, что всегда можно выбрать несколько из этих дуг так,
чтобы они тоже покрывали всю окружность и составляли в сумме не
более
720o .
На плоскости имеется 1983 точки и окружность единичного радиуса.
Доказать, что на окружности найдётся точка, сумма расстояний от которой до данных точек не меньше 1983.
Выпуклый $n$-угольник ($n$ > 4) обладает таким свойством: если диагональ отсекает от него треугольник, то этот треугольник равнобедренный. Докажите, что среди любых четырёх сторон этого n-угольника есть хотя бы две равных.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 71]