ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

У равнобедренного треугольника стороны равны 3 и 7. Какая из сторон является основанием?

Вниз   Решение


Докажите, что из всех хорд, проходящих через точку A, взятую внутри круга и отличную от центра, наименьшей будет та, которая перпендикулярна диаметру, проходящему через точку A.

ВверхВниз   Решение


Автор: Фольклор

Найдите x 3 + y3, если известно, что x + y = 5 и x + y + x2y + xy2 = 24.

ВверхВниз   Решение


На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).

ВверхВниз   Решение


Докажите, что все углы, образованные сторонами и диагоналями правильного n-угольника, кратны  180°/n.

ВверхВниз   Решение


Сторона основания правильной шестиугольной пирамиды равна , а угол боковой грани с плоскостью основания равен 60o . Найдите площадь сечения, проведённого через вершину пирамиды и меньшую диагональ основания.

ВверхВниз   Решение


Из шести палочек попарно различной длины сложены два треугольника (по три палочки в каждом). Всегда ли можно сложить из них один треугольник, стороны которого состоят из одной, двух и трех палочек соответственно?

ВверхВниз   Решение


С помощью циркуля и линейки постройте точку, из которой данный круг и данный отрезок видны под данными углами.

ВверхВниз   Решение


Прямоугольная проекция треугольной пирамиды на некоторую плоскость имеет максимально возможную площадь.
Докажите, что эта плоскость параллельна либо одной из граней, либо двум скрещивающимся ребрам пирамиды.

ВверхВниз   Решение


Пусть  f(x) = x² + px + q.  При каких p и q выполняются равенства  f(p) = f(q) = 0?

ВверхВниз   Решение


В поселке 20 жительниц. 1 марта одна из них узнала интересную новость и сообщила её всем своим подругам. 2 марта те сообщили новость всем своим подругам, и так далее. Может ли так случиться, что:
  а) 15 марта ещё не все жительницы будут знать новость, а 18 марта уже все?
  б) 25 марта ещё не все жительницы будут знать новость, а 28 марта уже все?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 30819

Тема:   [ Ориентированные графы ]
Сложность: 2
Классы: 6,7,8

Дима, приехав из Врунляндии, рассказал, что там есть несколько озер, соединённых между собой реками. Из каждого озера вытекают три реки, и в каждое озеро впадают четыре реки. Докажите, что он ошибается.

Прислать комментарий     Решение

Задача 30821

Темы:   [ Ориентированные графы ]
[ Обход графов ]
Сложность: 2+
Классы: 7,8

В некотором государстве каждый город соединён с каждым дорогой. Сумасшедший король хочет ввести на дорогах одностороннее движение так, чтобы выехав из любого города, в него нельзя было вернуться. Можно ли так сделать?

Прислать комментарий     Решение

Задача 32859

Темы:   [ Ориентированные графы ]
[ Обход графов ]
Сложность: 2+
Классы: 7

В поселке 20 жительниц. 1 марта одна из них узнала интересную новость и сообщила её всем своим подругам. 2 марта те сообщили новость всем своим подругам, и так далее. Может ли так случиться, что:
  а) 15 марта ещё не все жительницы будут знать новость, а 18 марта уже все?
  б) 25 марта ещё не все жительницы будут знать новость, а 28 марта уже все?

Прислать комментарий     Решение

Задача 35501

Темы:   [ Ориентированные графы ]
[ Многоугольники (прочее) ]
Сложность: 2+
Классы: 7,8,9

На сторонах некоторого многоугольника расставлены стрелки.
Докажите, что число вершин, в которые входят две стрелки, равно числу вершин, из которых выходят две стрелки.

Прислать комментарий     Решение

Задача 30820

Тема:   [ Ориентированные графы ]
Сложность: 3
Классы: 7,8

В некоторой стране есть столица и еще 100 городов. Некоторые города (в том числе и столица) соединены дорогами с односторонним движением. Из каждого нестоличного города выходит 20 дорог, и в каждый такой город входит 21 дорога. Докажите, что в столицу нельзя проехать ни из одного города.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .