ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Гуляя по Кенигсбергу, Леонард Эйлер захотел обойти город, пройдя по каждому мосту ровно один раз (см. рис.). Как ему это сделать?

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 79]      



Задача 30431

Тема:   [ Обход графов ]
Сложность: 2
Классы: 6,7

Имеется группа островов, соединённых мостами так, что от каждого острова можно добраться до любого другого. Турист обошёл все острова, пройдя по каждому мосту ровно один раз. На острове Троекратном он побывал трижды. Сколько мостов ведёт с Троекратного, если турист
  а) не с него начал и не на нём закончил?
  б) с него начал, но не на нём закончил?
  в) с него начал и на нём закончил?

Прислать комментарий     Решение

Задача 103781

Тема:   [ Обход графов ]
Сложность: 2
Классы: 6,7

Автор: Ботин Д.А.

Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть?

Прислать комментарий     Решение

Задача 32095

Темы:   [ Обход графов ]
[ Наглядная геометрия ]
Сложность: 2+
Классы: 5,6,7,8

Можно ли нарисовать эту картинку (см. рис.), не отрывая карандаша от бумаги и проходя по каждой линии по одному разу?

Прислать комментарий     Решение

Задача 32993

Темы:   [ Обход графов ]
[ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 8

Гуляя по Кенигсбергу, Леонард Эйлер захотел обойти город, пройдя по каждому мосту ровно один раз (см. рис.). Как ему это сделать?

Прислать комментарий     Решение

Задача 35473

Темы:   [ Обход графов ]
[ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 7,8

Художник-авангардист нарисовал картину "Контур квадрата и его диагонали".
Мог ли он нарисовать свою картину, не отрывая карандаша от бумаги и не проводя одну линию дважды?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .