Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 77]
|
|
Сложность: 4+ Классы: 10,11
|
Можно ли n раз рассадить 2n + 1 человек за круглым столом, чтобы никакие двое не сидели рядом более одного раза, если
а) n = 5; б) n = 4; в) n – произвольное натуральное число?
Можно ли четыре раза рассадить девять человек за круглым столом так, чтобы никакие двое не сидели рядом более одного раза?
Можно ли n раз рассадить 2n + 1 человека за круглым столом так, чтобы никакие двое не сидели рядом более одного раза, если а) n = 5; б) n = 10?
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Раскраска вершин графа называется правильной, если вершины одного цвета не соединены ребром. Некоторый граф правильно раскрашен в k цветов, причём его нельзя правильно раскрасить в меньшее число цветов. Докажите, что в этом графе существует путь, вдоль которого встречаются вершины всех k цветов ровно по одному разу.
|
|
Сложность: 4+ Классы: 9,10,11
|
В стране несколько городов, соединённых дорогами с односторонним и
двусторонним движением. Известно, что из каждого города в любой другой можно
проехать ровно одним путём, не проходящим два раза через один и тот же город.
Докажите, что страну можно разделить на три губернии так, чтобы ни одна дорога
не соединяла два города из одной губернии.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 77]