ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Один человек задумал 10 натуральных чисел - x1, x2, ... , x10. Другой отгадывает их. Разрешается задавать вопросы вида: "чему равна сумма a1x1+a2x2+...+a10x10?", где a1, a2, ... , a10 - некоторые натуральные числа. Как за 2 вопроса узнать все загаданные числа?

   Решение

Задачи

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 737]      



Задача 30470

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 4
Классы: 9,10

Игра начинается с числа 1000. За ход разрешается вычесть из имеющегося числа любое, не превосходящее его, натуральное число, являющееся степенью двойки (1 = 20). Выигрывает тот, кто получит ноль.

Прислать комментарий     Решение

Задача 32012

Темы:   [ Теория алгоритмов (прочее) ]
[ Двоичная система счисления ]
[ Принцип Дирихле (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 7,8,9

В колоде 16 карт, пронумерованных сверху вниз. Разрешается снять часть колоды сверху, после чего снятую и оставшуюся части колоды, не переворачивая "врезать" друг в друга. Может ли случиться, что после нескольких таких операций карты окажутся пронумерованными снизу вверх? Если да, то за какое наименьшее число операций это может произойти?

Прислать комментарий     Решение

Задача 32890

Темы:   [ Выигрышные и проигрышные позиции ]
[ Простые числа и их свойства ]
Сложность: 4
Классы: 7,8,9

На доске записано целое положительное число N. Два игрока ходят по очереди. За ход разрешается либо заменить число на доске на один из его делителей (отличных от единицы и самого числа), либо уменьшить число на единицу (если при этом число остается положительным). Тот, кто не может сделать ход, проигрывает. При каких N первый игрок может выиграть, как бы ни играл соперник?

Прислать комментарий     Решение

Задача 35103

Темы:   [ Теория алгоритмов (прочее) ]
[ Системы счисления (прочее) ]
Сложность: 4
Классы: 9,10,11

Один человек задумал 10 натуральных чисел - x1, x2, ... , x10. Другой отгадывает их. Разрешается задавать вопросы вида: "чему равна сумма a1x1+a2x2+...+a10x10?", где a1, a2, ... , a10 - некоторые натуральные числа. Как за 2 вопроса узнать все загаданные числа?
Прислать комментарий     Решение


Задача 35742

Темы:   [ Теория алгоритмов (прочее) ]
[ Ребусы ]
[ Криптография ]
Сложность: 4
Классы: 9,10,11

Исходное сообщение, состоящее из букв русского алфавита и знака пробела (-) между словами, преобразуется в цифровое сообщение заменой каждого его символа парой цифр согласно следующей таблице: \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline А & Б & В & Г & Д & Е & Ж & З & И & К & Л & М & Н & О & П \\ \hline 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & 10 & 11 & 12 & 13 & 14 & 15 \\ \hline \end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline Р & С & Т & У & Ф & Х & Ц & Ч & Ш & Щ & Ь & Ы & Э & Ю & Я & - \\ \hline 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 \\ \hline \end{tabular} Для зашифрования полученного цифрового сообщения используется отрезок некоторой последовательности с периодом 1 4 7 6 5 6 3 6 9 0 1 6 3 6 5 6 7 4 9 0 (при этом неизвестно, с какого места начинается последовательность). При зашифровании каждая цифра сообщения складывается с соответствующей цифрой отрезка и заменяется последней цифрой полученной суммы. Восстановите сообщение: 2339867216458160670617315588 (Задача с сайта www.cryptography.ru.)
Прислать комментарий     Решение


Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .