ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости дано n точек, никакие три из которых не лежат на одной прямой. Докажите, что их можно обозначить A1,A2,...,An в таком порядке, чтобы замкнутая ломаная A1A2...An была несамопересекающейся. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 129]
Для вещественных x > y > 0 и натуральных n > k докажите неравенство (xk – yk)n < (xn – yn)k.
На плоскости дано n точек, никакие три из которых не лежат на одной прямой. Докажите, что их можно обозначить A1,A2,...,An в таком порядке, чтобы замкнутая ломаная A1A2...An была несамопересекающейся.
Найдите все пары чисел x,y
На стол кладут правильный 100-угольник, в вершинах которого написаны числа 1, 2, ..., 100. Затем эти числа переписывают в порядке удаления от переднего края стола. Если две вершины находятся на равном расстоянии от края, сначала выписывается левое число, затем правое. Выписаны всевозможные наборы чисел, соответствующие разным положениям 100-угольника. Вычислить сумму чисел, стоящих в этих наборах на 13-х местах слева.
Решите уравнение xx4 = 4 (x > 0).
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 129]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке