Страница: 1
2 >> [Всего задач: 8]
|
|
Сложность: 3+ Классы: 9,10,11
|
На доске в ряд в некотором порядке выписаны несколько степеней двойки. Для каждой пары соседних чисел Петя записал в тетрадку степень, в которую нужно возвести левое число, чтобы получилось правое. Первым в ряду на доске шло число 2, а последним – число 1024. Вася утверждает, что этого достаточно, чтобы найти произведение всех чисел в тетрадке. Прав ли Вася?
|
|
Сложность: 3+ Классы: 9,10,11
|
Найдите такое значение $a > 1$, при котором уравнение $a^x = \log_a x$ имеет единственное решение.
|
|
Сложность: 3+ Классы: 10,11
|
Решите уравнение
xx4 = 4 (
x > 0).
|
|
Сложность: 4+ Классы: 10,11
|
Решите уравнение
в положительных числах.
|
|
Сложность: 3 Классы: 9,10,11
|
Найдите все положительные корни уравнения xx + x1–x = x + 1.
Страница: 1
2 >> [Всего задач: 8]