ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Рассматриваются решения уравнения 1/x + 1/y = 1/p (p > 1), где x, y и p – натуральные числа. Докажите, что если p – простое число, то уравнение имеет ровно три решения; если p – составное, то решений больше трёх ((a, b) и (b, a) – различные решения, если a ≠ b). РешениеСуществуют ли три различных действительных числа, каждое из которых в сумме с произведением двух оставшихся дает одно и то же число? Решение |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]
На доске написано n выражений вида *x² + *x + * = 0 (n – нечетное число). Двое играют в такую игру. Ходят по очереди. За ход разрешается заменить одну из звёздочек числом, не равным нулю. Через 3n ходов получится n квадратных уравнений. Первый игрок стремится к тому, чтобы как можно большее число этих уравнений не имело корней, а второй хочет ему помешать. Какое наибольшее число уравнений, не имеющих корней, может получить первый игрок независимо от игры второго?
Даны целые числа a, b и c, c ≠ b. Известно, что квадратные трёхчлены ax² + bx + c и (c – b)x² + (c – a)x + (a + b) имеют общий корень (не обязательно целый). Докажите, что a + b + 2c делится на 3.
Найти все действительные решения системы
Решая задачу: "Какое значение принимает выражение x2000 + x1999 + x1998 + 1000x1000 + 1000x999 + 1000x998 + 2000x³ + 2000x² + 2000x + 3000
Существуют ли три различных действительных числа, каждое из которых в сумме с произведением двух оставшихся дает одно и то же число?
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|