Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Двое мальчиков играют в такую игру: они по очереди ставят ладьи на шахматную доску. Выигрывает тот, при ходе которого все клетки доски оказываются битыми поставленными фигурами. Кто выиграет, если оба стараются играть наилучшим образом?

Вниз   Решение


Автор: Чичин В.

Постройте треугольник по двум сторонам так, чтобы медиана, проведённая к третьей стороне, делила угол треугольника в отношении  1 : 2.

ВверхВниз   Решение


В круге проведены два диаметра AB и CD, M — некоторая точка. Известно, что AM = 15, BM = 20, CM = 24. Найдите DM.

ВверхВниз   Решение


Неравнобедренный треугольник ABC вписан в окружность с центром O и описан около окружности с центром I. Точка B', симметричная точке B относительно прямой OI, лежит внутри угла ABI. Докажите, что касательные к описанной окружности треугольника BB'I, проведённые в точках B' и I, пересекаются на прямой AC.

ВверхВниз   Решение


Каждую букву исходного сообщения заменили её двузначным порядковым номером в русском алфавите согласно таблице:

Полученную цифровую последовательность разбили (справа налево) на трёхзначные цифровые группы без пересечений и пропусков. Затем каждое из полученных трёхзначных чисел умножили на 77 и оставили только три последние цифры произведения. В результате получилась следующая последовательность цифр:  317564404970017677550547850355.  Восстановите исходное сообщение.

Вверх   Решение

Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 750]      



Задача 35053

Темы:   [ Теория игр (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 9,10,11

2n конфет разложены по n коробкам. Девочка и мальчик по очереди берут по одной конфете, первой выбирает девочка.
Докажите, что мальчик может выбирать конфеты так, чтобы две последние конфеты оказались из одной коробки.

Прислать комментарий     Решение

Задача 35117

Темы:   [ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 7,8,9

Несколько камней весят вместе 10 т, при этом каждый из них весит не более 1 т.
  а) Докажите, что этот груз можно за один раз увезти на пяти трёхтонках.
  б) Приведите пример набора камней, удовлетворяющих условию, для которых четырёх трёхтонок может не хватить, чтобы увезти груз за один раз.

Прислать комментарий     Решение

Задача 35171

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 8,9,10

На экране терминала с доступом к "Матрице" горит число, которое каждую минуту увеличивается на 102. Начальное значение числа 123. Хакер Нео имеет возможность в любой момент изменять порядок цифр числа, находящегося на экране. Может ли он добиться того, чтобы число никогда не стало четырёхзначным? Добившись этого, он зациклит действия агентов и спасёт своих друзей.

Прислать комментарий     Решение

Задача 35224

Тема:   [ Взвешивания ]
Сложность: 3+
Классы: 8,9,10

Имеется четыре монеты, три из которых – настоящие, весящие одинаково, а одна – фальшивая, отличающаяся от них по весу. Имеются также чашечные весы без гирь. Весы таковы, что если положить на их чашки одинаковые по массе грузы, то любая из чашек может перевесить, а если грузы различны по массе, то всегда перевесит чашка с более тяжелым грузом. Как за три взвешивания на таких весах наверняка выявить фальшивую монету и определить, легче или тяжелее она настоящих?

Прислать комментарий     Решение

Задача 35335

Тема:   [ Симметричная стратегия ]
Сложность: 3+
Классы: 7,8,9

Двое мальчиков играют в такую игру: они по очереди ставят ладьи на шахматную доску. Выигрывает тот, при ходе которого все клетки доски оказываются битыми поставленными фигурами. Кто выиграет, если оба стараются играть наилучшим образом?

Прислать комментарий     Решение

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 750]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .