ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Через точку D основания AB равнобедренного треугольника ABC проведена прямая CD, пересекающая его описанную окружность в точке E.
Найдите AC, если  CE = 3  и  DE = DC.

   Решение

Задачи

Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 603]      



Задача 52406

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Подобные треугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Продолжение медианы AM треугольника ABC пересекает его описанную окружность в точке D. Найдите BC, если  AC = DC = 1.

Прислать комментарий     Решение

Задача 52407

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Подобные треугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Через точку D основания AB равнобедренного треугольника ABC проведена прямая CD, пересекающая его описанную окружность в точке E.
Найдите AC, если  CE = 3  и  DE = DC.

Прислать комментарий     Решение

Задача 53713

Темы:   [ Средняя линия треугольника ]
[ Вписанные и описанные окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Треугольник ABC вписан в окружность с центром O. Точки D и E диаметрально противоположны вершинам A и B соответственно. Хорда DF параллельна стороне BC. Прямая EF пересекает сторону AC в точке G, а сторону BC – в точке H. Докажите, что  OG || BC  и  EG = GH = GC.

Прислать комментарий     Решение

Задача 54267

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
[ Площадь трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD основание AB равно a, основание CD равно b.
Найдите площадь трапеции, если известно, что диагонали трапеции являются биссектрисами углов DAB и ABC.

Прислать комментарий     Решение

Задача 54280

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема Пифагора (прямая и обратная) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Отношение оснований трапеции равно  3 : 2,  а отношение боковых сторон равно  5 : 3.  Точка пересечения биссектрис углов при большем основаниии трапеции лежит на меньшем основании. Найдите углы трапеции.

Прислать комментарий     Решение

Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .