ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Угловая величина дуги равна 110°. Найдите угол между хордой и продолжением радиуса, проведённого в конец дуги.

   Решение

Задачи

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 603]      



Задача 35633

Темы:   [ Свойства симметрий и осей симметрии ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Сколько осей симметрии может быть у треугольника?

Прислать комментарий     Решение

Задача 36912

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 7

В треугольнике ABC угол С в три раза больше угла A. На стороне AB взята такая точка D, что  BD = BC.  Найдите CD, если  AD = 4.

Прислать комментарий     Решение

Задача 52560

Темы:   [ Хорды и секущие (прочее) ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

В окружности, радиус которой 1,4, определите расстояние от центра до хорды, если она отсекает дугу в 120°.

Прислать комментарий     Решение

Задача 52562

Темы:   [ Центральный угол. Длина дуги и длина окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Угловая величина дуги равна 110°. Найдите угол между хордой и продолжением радиуса, проведённого в конец дуги.

Прислать комментарий     Решение

Задача 56472

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 2+
Классы: 9

а) В треугольнике ABC проведена биссектриса BD внутреннего или внешнего угла. Докажите, что  AD : DC = AB : BC.

б) Докажите, что центр O вписанной окружности треугольника ABC делит биссектрису AA1 в отношении  AO : OA1 = (b + c) : a,  где a, b, c  – длины сторон треугольника.

Прислать комментарий     Решение

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .