ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Около треугольника ABC описана окружность. Пусть AD и BE — параллельные хорды. Известно, что отрезки BC и AD пересекаются, $ \angle$ECD = $ \alpha$ и $ \angle$BAC = 2$ \angle$ABC. Найдите отношение периметра треугольника ABC к радиусу вписанной в него окружности.

   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 292]      



Задача 53158

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

Около треугольника ABC описана окружность. Пусть AD и BE — параллельные хорды. Известно, что отрезки BC и AD пересекаются, $ \angle$ECD = $ \alpha$ и $ \angle$BAC = 2$ \angle$ABC. Найдите отношение периметра треугольника ABC к радиусу вписанной в него окружности.

Прислать комментарий     Решение


Задача 53166

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

Дана равнобедренная трапеция, в которую вписана окружность и около которой описана окружность. Площадь описанного круга в 12 раз больше площади вписанного круга. Найдите углы трапеции.

Прислать комментарий     Решение


Задача 53286

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Трапеция ABCD с основаниями BC = 1 и AD = 3 такова, что в неё можно вписать окружность и вокруг неё можно описать окружность. Определите, где находится центр описанной вокруг трапеции ABCD окружности, т.е. расположен ли он внутри, или вне, или же на одной из сторон трапеции ABCD. Найдите также площадь описанного круга.

Прислать комментарий     Решение


Задача 54366

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь трапеции ]
Сложность: 4
Классы: 8,9

В равнобедренной трапеции ABCD углы при основании AD равны 30o, диагональ AC является биссектрисой угла BAD. Биссектриса угла BCD пересекает основание AD в точке M, а отрезок BM пересекает диагональ AC в точке N. Найдите площадь треугольника ANM, если площадь трапеции ABCD равна 2 + $ \sqrt{3}$.

Прислать комментарий     Решение


Задача 54367

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь трапеции ]
Сложность: 4
Классы: 8,9

В равнобедреной трапеции ABCD углы при основании AD равны 45o, диагональ AC является биссектрисой угла BAD. Биссектриса угла BCD пересекает основание AD в точке K, а отрезок BK пересекает диагональ AC в точке Q. Найдите площадь треугольника ABQ, если площадь трапеции ABCD равна 3 + 2$ \sqrt{2}$.

Прислать комментарий     Решение


Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 292]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .