|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B. В треугольнике ABC точка O – центр описанной окружности, точка L – середина стороны AB. Описанная окружность треугольника ALO пересекает прямую AC в точке K. Найдите площадь треугольника ABC, если ∠LOA = 45°, LK = 8, AK = 7. Имеется три ящика, в каждом из которых лежат шары с номерами от 0 до 9. Из каждого ящика вынимается по одному шару. Какова вероятность того, что а) вынуты три единицы; б) вынуты три равных числа? Для тестирования новой программы компьютер выбирает случайное действительное число A из отрезка [1, 2] и заставляет программу решать уравнение 3x + A = 0. Найдите вероятность того, что корень этого уравнения меньше чем –0,4. У игрока в преферанс оказалось 4 козыря, а еще 4 находятся на руках у двух его противников. Какова вероятность того, что козыри лягут а) 2 : 2; б) 3 : 1; в) 4 : 0? На сторонах BC, CA, и AB треугольника ABC взяты точки A1, B1 и C1, причём AC1 = AB1, BA1 = BC1 и CA1 = CB1.
Центр описанной окружности треугольника симметричен его центру вписанной окружности относительно одной из сторон. Найдите углы треугольника. |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 793]
Высота прямоугольного треугольника, опущенная на гипотенузу, делит этот треугольник на два треугольника. Расстояние между центрами вписанных окружностей этих треугольников равно 1. Найдите радиус вписанной окружности исходного треугольника.
Центр описанной окружности треугольника симметричен его центру вписанной окружности относительно одной из сторон. Найдите углы треугольника.
В треугольнике ABC точка O – центр описанной окружности, точка L – середина стороны AB. Описанная окружность треугольника ALO пересекает прямую AC в точке K. Найдите площадь треугольника ABC, если ∠LOA = 45°, LK = 8, AK = 7.
На сторонах BC, CA, и AB треугольника ABC взяты точки A1, B1 и C1, причём AC1 = AB1, BA1 = BC1 и CA1 = CB1.
В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 793] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|