ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Две окружности с центрами M и N, лежащими на стороне AB
треугольника ABC, касаются друг друга и пересекают стороны AC и
BC в точках A, P и B, Q соответственно. Причем
AM = PM = 2, BN = = QN = 5. Найдите радиус описанной около треугольника ABC
окружности, если известно, что отношение площади треугольника AQN
к площади треугольника MPB равно
15
Найдите диагональ прямоугольника со сторонами 5 и 12. Биссектрисы, проведённые из вершин A и B треугольника ABC, пересекаются в точке D. Найдите угол ADB, если: Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 542]
На высоте AH треугольника ABC взята точка M. Докажите, что AB² – AC² = MB² – MC².
Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами.
Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра.
Найдите диагональ прямоугольника со сторонами 5 и 12.
Найдите расстояние от центра окружности радиуса 10 до хорды, равной 12.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 542]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке