Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Вычислить с пятью десятичными знаками (то есть с точностью до 0,00001) произведение:  

Вниз   Решение


Пусть R и r — радиусы описанной и вписанной окружностей треугольника. Докажите, что R$ \ge$2r, причем равенство достигается лишь для равностороннего треугольника.

ВверхВниз   Решение


Решите уравнение:  x(x + 1) = 2014·2015.

ВверхВниз   Решение


Определить отношение двух чисел, если отношение их среднего арифметического к среднему геометрическому равно 25 : 24.

ВверхВниз   Решение


Даны два набора векторов a1,...,an и  b1,...,bm, причем сумма длин проекций векторов первого набора на любую прямую не больше суммы длин проекций векторов второго набора на ту же прямую. Докажите, что сумма длин векторов первого набора не больше суммы длин векторов второго набора.

ВверхВниз   Решение


Пусть M — центр масс n-угольника A1...An; M1,..., Mn — центры масс (n - 1)-угольников, полученных из этого n-угольника выбрасыванием вершин A1,..., An соответственно. Докажите, что многоугольники A1...An и  M1...Mn гомотетичны.

ВверхВниз   Решение


Биссектриса угла A треугольника ABC продолжена до пересечения в D с описанной вокруг него окружностью. Докажите, что AD > 1/2 (AB + AC).

ВверхВниз   Решение


Автор: Фольклор

Докажите, что для любых четырёх точек A, B, C, D, не лежащих в одной плоскости, выполнено неравенство  AB·CD + AC·BD > AD·BC.

ВверхВниз   Решение


Докажите, что  rrc $ \leq$ c2/4.

ВверхВниз   Решение


Известно, что если поверхность некоторого тетраэдра ABCD разрезать вдоль рёбер AD , BD и CD , то его развёрткой на плоскость ABC будет квадрат со стороной a . Найдите объём тетраэдра.

ВверхВниз   Решение


На каждой стороне треугольника ABC построено по квадрату во внешнюю сторону (пифагоровы штаны). Оказалось, что внешние вершины всех квадратов лежат на одной окружности. Доказать, что треугольник ABC — равнобедренный.

ВверхВниз   Решение


В треугольнике ABC взяли точку M так, что что радиусы описанных окружностей треугольников AMC, BMC и BMA не меньше радиуса описанной окружности треугольника ABC. Докажите, что все четыре радиуса равны.

ВверхВниз   Решение


Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M; P — произвольная точка. Прямая la проходит через точку A параллельно прямой PA1; прямые lb и lc определяются аналогично. Докажите, что:
а) прямые la, lb и lc пересекаются в одной точке Q;
б) точка M лежит на отрезке PQ, причем PM : MQ = 1 : 2.

ВверхВниз   Решение


В пространстве рассматриваются два отрезка AB и CD , не лежащие в одной плоскости. Пусть M и K – их середины. Докажите, что MK < (AD + BC) .

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по двум углам A, B и периметру P.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 57206

Тема:   [ Подобные треугольники и гомотетия (построения) ]
Сложность: 2
Классы: 8,9

Постройте треугольник по двум углам A, B и периметру P.
Прислать комментарий     Решение


Задача 57207

Тема:   [ Подобные треугольники и гомотетия (построения) ]
Сложность: 2
Классы: 8,9

Постройте треугольник ABC по ma, mb и mc.
Прислать комментарий     Решение


Задача 54567

Темы:   [ Подобные треугольники и гомотетия (построения) ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Построение треугольников по различным элементам ]
Сложность: 3
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по двум углам A, B и периметру P.

Прислать комментарий     Решение

Задача 54626

Темы:   [ Подобные треугольники и гомотетия (построения) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

С помощью циркуля и линейки через точку внутри угла проведите прямую, отсекающую от сторон этого угла отрезки, отношение которых равно данному.

Прислать комментарий     Решение

Задача 57208

Тема:   [ Подобные треугольники и гомотетия (построения) ]
Сложность: 3
Классы: 8,9

Постройте треугольник ABC по ha, hb и hc.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .