ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Частные случаи треугольников
>>
Прямоугольные треугольники
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В прямоугольном треугольнике ABC катет AC = 15 и катет BC = 20. На гипотенузе AB отложен отрезок AD, равный 4, и точка D соединена с C. Найдите CD. Решение |
Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 1354]
Периметр ромба равен 8, высота равна 1. Найдите тупой угол ромба.
Найдите высоту прямоугольного треугольника, проведённую из вершины прямого угла, если гипотенуза равна 8, а один из острых углов равен 60o.
В равнобедренном прямоугольном треугольнике ABC на продолжении гипотенузы AB за точку B отложен отрезок BD, равный BC, и точка D соединена с C. Найдите стороны треугольника ADC, если катет BC = a.
В прямоугольном треугольнике ABC катет AC = 15 и катет BC = 20. На гипотенузе AB отложен отрезок AD, равный 4, и точка D соединена с C. Найдите CD.
Гипотенуза AB прямоугольного треугольника ABC равна 9, катет BC равен 3. На гипотенузе взята точка M, причём AM : MB = 1 : 2. Найдите CM.
Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 1354] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|