|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что сумма расстояний от произвольной точки до трех вершин равнобедренной трапеции больше расстояния от этой точки до четвертой вершины. Докажите, что если два противоположных угла четырехугольника тупые, то диагональ, соединяющая вершины этих углов, короче другой диагонали. Имеются две параллельные прямые p1 и p2.
Точки A и B лежат на p1, а C – на p2. Будем перемещать отрезок BC параллельно самому себе и рассмотрим все треугольники ABC, полученные таким образом. Найдите геометрическое место точек, являющихся в этих треугольниках: В четырехугольнике ABCD углы A и B равны, a Концы отрезков AB и CD перемещаются по сторонам данного угла, причем прямые AB и CD перемещаются параллельно; M – точка пересечения отрезков AB и CD. Докажите, что величина
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 93]
Kаждый из двух подобных треугольников разрезали на два треугольника так, что одна из получившихся частей одного треугольника подобна одной из частей другого треугольника. Bерно ли, что оставшиеся части также подобны?
Концы отрезков AB и CD перемещаются по сторонам данного угла, причем прямые AB и CD перемещаются параллельно; M – точка пересечения отрезков AB и CD. Докажите, что величина
Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке E. Найдите стороны треугольника AED, если AB = 3, BC = 10, CD = 4, AD = 12.
AB и AC – касательные к окружности с центром O, M – точка пересечения прямой AO с окружностью; DE – отрезок касательной, проведённой через точку M, между AB и AC. Найдите DE, если радиус окружности равен 15, а AO = 39.
Диагонали трапеции взаимно перпендикулярны. Докажите, что произведение длин оснований трапеции равно сумме произведений длин отрезков одной диагонали и длин отрезков другой диагонали, на которые они делятся точкой пересечения.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 93] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|