ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Вершина A остроугольного треугольника ABC
соединена отрезком с центром O описанной окружности. Из вершины A
проведена высота AH. Докажите, что
Даны (2n - 1)-угольник
A1...A2n - 1 и точка O.
Прямые AkO и
An + k - 1An + k пересекаются в точке Bk.
Докажите, что произведение отношений
An + k - 1Bk/An + kBk(k = 1,..., n) равно 1.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 172]
Докажите, что сумма расстояний от точки, взятой
произвольно внутри правильного треугольника, до его сторон
постоянна (и равна высоте треугольника).
Докажите, что длина биссектрисы AD треугольника ABC
равна
Внутри треугольника ABC взята точка O; прямые AO, BO
и CO пересекают его стороны в точках A1, B1 и C1. Докажите, что:
Даны (2n - 1)-угольник
A1...A2n - 1 и точка O.
Прямые AkO и
An + k - 1An + k пересекаются в точке Bk.
Докажите, что произведение отношений
An + k - 1Bk/An + kBk(k = 1,..., n) равно 1.
Пусть c – длина гипотенузы,
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 172]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке