ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Опустим из точки M перпендикуляры MA1, MB1 и MC1 на прямые BC, CA и AB. Для фиксированного треугольника ABC множество точек M, для которых угол Брокара треугольника A1B1C1 имеет заданное значение, состоит из двух окружностей, причем одна из них расположена внутри описанной окружности треугольника ABC, а другая вне ее (окружности Схоуте).

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 113]      



Задача 56977

 [Оружности Схоуте]
Темы:   [ Точки Брокара ]
[ Метод координат на плоскости ]
Сложность: 7+
Классы: 9,10,11

Опустим из точки M перпендикуляры MA1, MB1 и MC1 на прямые BC, CA и AB. Для фиксированного треугольника ABC множество точек M, для которых угол Брокара треугольника A1B1C1 имеет заданное значение, состоит из двух окружностей, причем одна из них расположена внутри описанной окружности треугольника ABC, а другая вне ее (окружности Схоуте).
Прислать комментарий     Решение


Задача 79240

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
[ Метод координат на плоскости ]
Сложность: 4-
Классы: 7,8,9

Автор: Ионин Ю.И.

В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?

Прислать комментарий     Решение

Задача 98049

Темы:   [ Геометрические интерпретации в алгебре ]
[ Приближения чисел ]
[ Метод координат на плоскости ]
[ Рациональные и иррациональные числа ]
Сложность: 4
Классы: 8,9,10

Автор: Фомин Д.

Сколько существует таких пар натуральных чисел  (m, n),  каждое из которых не превышает 1000, что  

Прислать комментарий     Решение

Задача 109017

Темы:   [ Окружность Ферма-Аполлония ]
[ ГМТ - окружность или дуга окружности ]
[ Метод координат на плоскости ]
Сложность: 4
Классы: 8,9,10

На плоскости даны точки A и B . Доказать, что множество всех точек M , удалённых от A в 3 раза больше, чем от B , есть окружность.
Прислать комментарий     Решение


Задача 54550

 [Окружность Аполлония.]
Темы:   [ Окружность Ферма-Аполлония ]
[ Отношение, в котором биссектриса делит сторону ]
[ Метод координат на плоскости ]
Сложность: 5-
Классы: 8,9

Найдите геометрическое место точек, расстояния от каждой из которых до двух данных точек относятся как m : n.

Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .