ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Выпуклый многоугольник, площадь которого больше 0, 5, помещен в квадрат со стороной 1. Докажите, что внутри многоугольника можно поместить отрезок длины 0, 5, параллельный стороне квадрата.

   Решение

Задачи

Страница: << 97 98 99 100 101 102 103 >> [Всего задач: 9702]      



Задача 57352

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 3
Классы: 9

Выпуклый многоугольник, площадь которого больше 0, 5, помещен в квадрат со стороной 1. Докажите, что внутри многоугольника можно поместить отрезок длины 0, 5, параллельный стороне квадрата.
Прислать комментарий     Решение


Задача 57372

Тема:   [ Четырехугольник (неравенства) ]
Сложность: 3
Классы: 8,9

Угол A четырехугольника ABCD тупой; F — середина стороны BC. Докажите, что 2FA < BD + CD.
Прислать комментарий     Решение


Задача 57386

Тема:   [ Многоугольники (неравенства) ]
Сложность: 3
Классы: 9

а) Докажите, что если длины проекций отрезка на две взаимно перпендикулярные прямые равны a и b, то его длина не меньше  (a + b)/$ \sqrt{2}$.
б) Длины проекций многоугольника на координатные оси равны a и b. Докажите, что его периметр не меньше  $ \sqrt{2}$(a + b).
Прислать комментарий     Решение


Задача 57399

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 3
Классы: 8,9

Докажите, что замкнутую ломаную длины 1 можно поместить в круг радиуса 0, 25.
Прислать комментарий     Решение


Задача 57410

Тема:   [ Неравенства с медианами ]
Сложность: 3
Классы: 8,9

Медианы AA1 и BB1 треугольника ABC пересекаются в точке M. Докажите, что если четырехугольник A1MB1C описанный, то AC = BC.
Прислать комментарий     Решение


Страница: << 97 98 99 100 101 102 103 >> [Всего задач: 9702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .