ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||
Страница: 1 [Всего задач: 3]
На стороне AC треугольника ABC взяли такую точку D, что угол BDC равен углу ABC. Чему равно наименьшее возможное расстояние между центрами окружностей, описанных около треугольников ABC и ABD, если BC=1?
В треугольнике ABC с тупым углом B отмечены такие точки P и Q на AC, что AP=PB, BQ=QC. Окружность BPQ пересекает стороны AB и BC в точках N и M соответственно. а) (П.Рябов) Докажите, что точка R пересечения PM и NQ равноудалена от A и C. б) (А.Заславский) Пусть BR пересекает AC в точке S. Докажите, что MN⊥OS, где O – центр описанной окружности треугольника ABC.
В остроугольном треугольнике ABC проведены высоты AA' и BB'. Точка O – центр окружности, описанной около треугольника ABC. Докажите, что расстояние от точки A' до прямой B' равно расстоянию от точки B' до прямой A'.
Страница: 1 [Всего задач: 3]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке