ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана шахматная доска. Разрешается перекрашивать в другой цвет сразу все клетки какой-либо горизонтали или вертикали.
Может ли при этом получиться доска, у которой ровно одна чёрная клетка?

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 536]      



Задача 58170

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Инварианты ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9

Дана шахматная доска. Разрешается перекрашивать в другой цвет сразу все клетки какой-либо горизонтали или вертикали.
Может ли при этом получиться доска, у которой ровно одна чёрная клетка?

Прислать комментарий     Решение

Задача 60355

Тема:   [ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 7,8

Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?

Прислать комментарий     Решение

Задача 64421

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 9,10

Можно ли в клетки таблицы размером 4×4 вписать по целому числу так, чтобы сумма всех чисел таблицы была положительной, а сумма чисел в каждом квадрате размера 3×3 была отрицательной?

Прислать комментарий     Решение

Задача 64440

Темы:   [ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

В турнире участвуют 100 борцов, все разной силы. Более сильный всегда побеждает более слабого. Борцы разбились на пары и провели поединки. Затем разбились на пары по-другому и снова провели поединки. Призы получили те, кто выиграл оба поединка. Каково наименьшее возможное количество призёров?

Прислать комментарий     Решение

Задача 64570

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7

Из шести костяшек домино (см. рис.) сложите прямоугольник 3×4 так, чтобы во всех трёх строчках точек было поровну и во всех четырёх столбцах точек было тоже поровну.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 536]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .