Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 536]
В спортивном клубе проходит первенство по теннису. Проигравший партию выбывает из борьбы (ничьих в теннисе не бывает). Пару для следующей партии определяет жребий. Первую партию судил приглашённый судья, а каждую следующую партию должен судить член клуба, не участвующий в ней и не судивший ранее. Могло ли так оказаться, что очередную партию судить некому?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Из клетчатой доски размером 8×8 выпилили восемь прямоугольников размером 2×1. После этого из оставшейся части требуется выпилить квадрат размером 2×2. Обязательно ли это удастся?
|
|
Сложность: 3 Классы: 8,9,10,11
|
В школе провели турнир по настольному теннису. Турнир состоял из нескольких туров. В каждом туре каждый участник играл ровно в одном матче, а каждый матч судил один из не участвовавших в нем игроков.
После нескольких туров оказалось, что каждый участник сыграл по одному разу с каждым из остальных. Может ли оказаться, что все участники турнира судили одинаковое количество встреч?
|
|
Сложность: 3 Классы: 8,9,10,11
|
На доске $6\times6$ расставили шесть не угрожающих друг другу ладей. Затем каждое не занятое ладьёй поле покрасили по такому правилу: если ладьи, угрожающие этому полю, находятся от него на одинаковом расстоянии, то это поле закрашивают в красный цвет, а если на разном – то в синий цвет. Могли ли все не занятые поля оказаться
а) красными;
б) синими?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Группа из восьми теннисистов раз в год разыгрывала кубок по
олимпийской системе (игроки по жребию делятся на 4 пары;
выигравшие делятся по жребию на две пары, играющие в полуфинале; их победители играют финальную партию).
Через несколько лет оказалось, что каждый с каждым сыграл ровно один раз.
Докажите, что
а) каждый побывал в полуфинале более одного раза;
б) каждый побывал в финале.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 536]