ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 536]      



Задача 65927

Темы:   [ Турниры и турнирные таблицы ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 8,9

В спортивном клубе проходит первенство по теннису. Проигравший партию выбывает из борьбы (ничьих в теннисе не бывает). Пару для следующей партии определяет жребий. Первую партию судил приглашённый судья, а каждую следующую партию должен судить член клуба, не участвующий в ней и не судивший ранее. Могло ли так оказаться, что очередную партию судить некому?

Прислать комментарий     Решение

Задача 66353

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Разные задачи на разрезания ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Из клетчатой доски размером 8×8 выпилили восемь прямоугольников размером 2×1. После этого из оставшейся части требуется выпилить квадрат размером 2×2. Обязательно ли это удастся?

Прислать комментарий     Решение

Задача 66630

Темы:   [ Таблицы и турниры (прочее) ]
[ Комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В школе провели турнир по настольному теннису. Турнир состоял из нескольких туров. В каждом туре каждый участник играл ровно в одном матче, а каждый матч судил один из не участвовавших в нем игроков.

После нескольких туров оказалось, что каждый участник сыграл по одному разу с каждым из остальных. Может ли оказаться, что все участники турнира судили одинаковое количество встреч?

Прислать комментарий     Решение

Задача 66690

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10,11

На доске $6\times6$ расставили шесть не угрожающих друг другу ладей. Затем каждое не занятое ладьёй поле покрасили по такому правилу: если ладьи, угрожающие этому полю, находятся от него на одинаковом расстоянии, то это поле закрашивают в красный цвет, а если на разном – то в синий цвет. Могли ли все не занятые поля оказаться
  а) красными;
  б) синими?

Прислать комментарий     Решение

Задача 66866

Тема:   [ Таблицы и турниры (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Группа из восьми теннисистов раз в год разыгрывала кубок по олимпийской системе (игроки по жребию делятся на 4 пары; выигравшие делятся по жребию на две пары, играющие в полуфинале; их победители играют финальную партию). Через несколько лет оказалось, что каждый с каждым сыграл ровно один раз. Докажите, что
а) каждый побывал в полуфинале более одного раза;
б) каждый побывал в финале.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 536]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .