ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга? Решение |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 536]
Дана шахматная доска. Разрешается перекрашивать в другой цвет сразу все клетки какой-либо горизонтали или вертикали.
Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?
Можно ли в клетки таблицы размером 4×4 вписать по целому числу так, чтобы сумма всех чисел таблицы была положительной, а сумма чисел в каждом квадрате размера 3×3 была отрицательной?
В турнире участвуют 100 борцов, все разной силы. Более сильный всегда побеждает более слабого. Борцы разбились на пары и провели поединки. Затем разбились на пары по-другому и снова провели поединки. Призы получили те, кто выиграл оба поединка. Каково наименьшее возможное количество призёров?
Из шести костяшек домино (см. рис.) сложите прямоугольник 3×4 так, чтобы во всех трёх строчках точек было поровну и во всех четырёх столбцах точек было тоже поровну.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 536] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|