ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Числа от 1 до 1000 выписаны подряд по кругу. Начиная с первого, вычёркивается каждое 15-е число: 1, 16, 31, ..., причём при повторных оборотах зачёркнутые числа считаются снова. Число оборотов не ограничено. Сколько чисел останутся незачёркнутыми?

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 275]      



Задача 60493

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Натуральные числа a1, a2, ..., a49 удовлетворяют равенству  a1 + a2 + ... + a49 = 540.
Какое наибольшее значение может принимать их наибольший общий делитель?

Прислать комментарий     Решение

Задача 60495

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Числа от 1 до 1000 выписаны подряд по кругу. Начиная с первого, вычёркивается каждое 15-е число: 1, 16, 31, ..., причём при повторных оборотах зачёркнутые числа считаются снова. Число оборотов не ограничено. Сколько чисел останутся незачёркнутыми?

Прислать комментарий     Решение

Задача 60533

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9

Докажите равенства:
  а)  [a,(a, b)] = a;
  б)  (a, [a, b]) = a;
  в)  abc = [a, b, c](ab, ac, bc);
  г)  abc = (a, b, c)[ab, bc, ac].

Прислать комментарий     Решение

Задача 60534

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9,10

Приведите пример, когда равенство  (a, b, c)[a, b, c] = abc  не выполнено. Каким неравенством всегда будут связаны числа  (a, b, c)[a, b, c]  и abc?

Прислать комментарий     Решение

Задача 60998

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Найдите такие линейные функции  P(x)  и  Q(x),  чтобы выполнялось равенство   P(x)(2x³ – 7x² + 7x – 2) + Q(x)(2x³ + x² + x – 1) = 2x – 1.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .