Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 71]
|
|
Сложность: 4- Классы: 9,10,11
|
Пользуясь результатом задачи 60579, найдите остатки, которые при простом p дают числа Fp и Fp+1 при делении на p.
|
|
Сложность: 4- Классы: 8,9,10
|
Требуется сделать набор гирек, каждая из которых весит целое число граммов,
с помощью которых можно взвесить любой целый вес от 1 до 55 граммов включительно даже в том случае, если некоторые гирьки потеряны (гирьки кладутся на одну чашку весов, измеряемый вес – на другую). Рассмотрите два варианта задачи:
а) необходимо подобрать 10 гирек, из которых может быть потеряна
любая одна;
б) необходимо подобрать 12 гирек, из которых могут быть потеряны любые две.
|
|
Сложность: 4 Классы: 9,10,11
|
Вычислите
Fn + 24 -
FnFn + 1Fn + 3Fn + 4.
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть первое число Фибоначчи, делящееся на m, есть Fk. Докажите, что m | Fn тогда и только тогда, когда k | n.
|
|
Сложность: 4 Классы: 9,10,11
|
В последовательности чисел Фибоначчи выбрано
8 чисел, идущих подряд. Докажите, что их сумма не является
числом Фибоначчи.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 71]