ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 71]      



Задача 76533

Темы:   [ Числа Фибоначчи ]
[ Десятичная система счисления ]
Сложность: 5
Классы: 9,10,11


Дан ряд чисел: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ..., в котором каждое число, начиная с третьего, равно сумме двух предыдущих. Найдётся ли среди первых  108 + 1  членов этого ряда число, оканчивающееся четырьмя нулями?

Прислать комментарий     Решение

Задача 109949

Темы:   [ Числа Фибоначчи ]
[ Выигрышные и проигрышные позиции ]
[ Линейные рекуррентные соотношения ]
[ Системы счисления (прочее) ]
[ Оценка + пример ]
Сложность: 6-
Классы: 8,9,10,11

Загадано число от 1 до 144. Разрешается выделить одно подмножество множества чисел от 1 до 144 и спросить, принадлежит ли ему загаданное число. За ответ да надо заплатить 2 рубля, за ответ нет – 1 рубль. Какая наименьшая сумма денег необходима для того, чтобы наверняка угадать число?
Прислать комментарий     Решение


Задача 60591

Темы:   [ Алгоритм Евклида ]
[ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9,10,11

Рассмотрим алгоритм Евклида из задачи 60488, состоящий из k шагов.
Докажите, что начальные числа m0 и m1 должны удовлетворять неравенствам  m1Fk+1m0Fk+2.

Прислать комментарий     Решение

Задача 60596

Темы:   [ Цепные (непрерывные) дроби ]
[ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9,10,11

Пусть     Чему равны Pn и Qn?

Прислать комментарий     Решение

Задача 60517

Темы:   [ Алгоритм Евклида ]
[ Числа Фибоначчи ]
Сложность: 3+
Классы: 8,9,10

Докажите, что число шагов в алгоритме Евклида может быть сколь угодно большим.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 71]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .