ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Алгебра и арифметика
>>
Последовательности
>>
Рекуррентные соотношения
>>
Числа Фибоначчи
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Данная таблица аналогична треугольнику Паскаля и состоит из фибоначчиевых коэффициентов определяемых равенством а) Докажите, что фибоначчиевы коэффициенты обладают свойством симметрии б) Найдите формулу, которая выражает коэффициент через и (аналогичную равенству б) из задачи 60413). в) Объясните, почему все фибоначчиевы коэффициенты являются целыми числами. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 71]
Докажите, что два соседних числа Фибоначчи Fn–1 и Fn (n ≥ 1) взаимно просты.
Докажите равенство (Fn, Fm) = F(m, n).
Докажите, что число Фибоначчи Fn совпадает с ближайшим целым числом к , то есть Fn = + .
Данная таблица аналогична треугольнику Паскаля и состоит из фибоначчиевых коэффициентов определяемых равенством а) Докажите, что фибоначчиевы коэффициенты обладают свойством симметрии б) Найдите формулу, которая выражает коэффициент через и (аналогичную равенству б) из задачи 60413). в) Объясните, почему все фибоначчиевы коэффициенты являются целыми числами.
Дана последовательность чисел 1, 2, 3, 5, 8, 13, 21, ..., в которой каждое число, начиная с третьего, равно сумме двух предыдущих. В этой последовательности выбрано восемь чисел подряд. Докажите, что их сумма не равна никакому числу рассматриваемой последовательности.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 71] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|