ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Докажите, что положительный корень квадратного уравнения  bx² – abx – a = 0,  где a и b – различные натуральные числа, разлагается в чисто периодическую цепную дробь с длиной периода, равной 2.
б) Верно ли обратное утверждение?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 40]      



Задача 60623

Темы:   [ Цепные (непрерывные) дроби ]
[ Квадратные уравнения и системы уравнений ]
[ Целочисленные и целозначные многочлены ]
Сложность: 3
Классы: 9,10,11

а) Докажите, что положительный корень квадратного уравнения  bx² – abx – a = 0,  где a и b – различные натуральные числа, разлагается в чисто периодическую цепную дробь с длиной периода, равной 2.
б) Верно ли обратное утверждение?

Прислать комментарий     Решение

Задача 98103

Темы:   [ Цепные (непрерывные) дроби ]
[ Обыкновенные дроби ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9

Докажите, что

Прислать комментарий     Решение

Задача 60603

Темы:   [ Цепные (непрерывные) дроби ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 9,10,11

Пусть числа a и b определены равенством  a/b = [a0; a1, a2, ..., an].  Докажите, что уравнение  ax – by = 1  c неизвестными x и y имеет решением одну из пар  (Qn–1, Pn–1)  или  (– Qn–1, – Pn–1),  где  Pn–1/Qn–1  – (n–1)-я подходящая дробь. От чего зависит, какая именно из пар является решением?

Прислать комментарий     Решение

Задача 60606

Тема:   [ Цепные (непрерывные) дроби ]
Сложность: 3+
Классы: 9,10,11

Докажите, что любое иррациональное число α допускает представление  α = [a0; a1, ..., an–1, αn],  где a0 – целое, a1, a2, ..., an–1 – натуральные,  αn > 1  – иррациональное действительное. Отсюда следует, что каждому иррациональному действительному числу можно поставить в соответствие бесконечную цепную дробь.

Прислать комментарий     Решение

Задача 60608

Темы:   [ Цепные (непрерывные) дроби ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 10,11

Предположим, что число α задано бесконечной цепной дробью  α = [a0; a1, ..., an, ...].  Докажите, что     где Qk – знаменатели подходящих дробей.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 40]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .