Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 187]
|
|
Сложность: 3+ Классы: 10,11
|
Существует ли арифметическая прогрессия из пяти различных натуральных чисел, произведение которых есть точная 2008-я степень натурального числа?
|
|
Сложность: 3+ Классы: 8,9,10
|
Через терминал оплаты на мобильный телефон можно перевести деньги, при этом взимается комиссия – натуральное число процентов. Федя положил целое количество рублей на мобильный телефон, и его счет пополнился на 847 рублей. Сколько денег положил на счет Федя, если известно, что комиссия менее 30%?
Назовём натуральные числа a и b друзьями, если их произведение является точным квадратом. Докажите, что если a – друг b, то a – друг НОД(a, b).
|
|
Сложность: 4- Классы: 9,10,11
|
Пусть числа x1, x2, ..., xr образуют приведённую систему вычетов по модулю m.
Для каких a и b числа yj = axj + b (j = 1, ..., r) также образуют приведённую систему вычетов по модулю m?
В клетки таблицы размером 9×9 расставили все натуральные числа от 1 до 81. Вычислили произведения чисел в каждой строке таблицы и получили набор из девяти чисел. Затем вычислили произведения чисел в каждом столбце таблицы и также получили набор из девяти чисел.
Могли ли полученные наборы оказаться одинаковыми?
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 187]