Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 278]
|
|
Сложность: 4- Классы: 8,9,10,11
|
Коля Васин задумал число от 1 до 31
включительно и выбрал из 5 данных карточек
1 |
3 |
5 |
7 |
9 |
11 |
13 |
15 |
17 |
19 |
21 |
23 |
25 |
27 |
29 |
31 |
2 |
3 |
6 |
7 |
10 |
11 |
14 |
15 |
18 |
19 |
22 |
23 |
26 |
27 |
30 |
31 |
4 |
5 |
6 |
7 |
12 |
13 |
14 |
15 |
20 |
21 |
22 |
23 |
28 |
29 |
30 |
31 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
те, на которых это число присутствует. Как, зная эти карточки,
угадать задуманное число? Какими должны быть карточки, чтобы по
ним можно было угадывать числа от 1 до 63?
|
|
Сложность: 4- Классы: 7,8,9,10,11
|
Карточный фокус. а) Берется колода из
27 карт (без одной масти). Ваш друг загадывает одну из карт.
После чего вы раскладываете все карты в три равные кучки, кладя
каждый раз по одной карте (в первую кучку, затем во вторую, затем
в третью, потом снова в первую и т. д.). Ваш друг указывает на ту
кучку, в которой лежит его карта. Далее вы складываете все три
кучки вместе, вставляя при этом указанную кучку между двумя
другими. Эта процедура повторяется еще два раза. На каком месте в
колоде окажется загаданная карта, после того, как вы сложите
вместе три кучки в третий раз?
б) На каком месте окажется загаданная карта, если с самого начала
было 3
n (
n < 9) карт?
|
|
Сложность: 4- Классы: 6,7,8
|
На доске записаны два числа: 2014 и 2015. Петя и Вася ходят по очереди, начинает Петя. За один ход можно
- либо уменьшить одно из чисел на его ненулевую цифру или на ненулевую цифру другого числа;
- либо разделить одно из чисел пополам, если оно чётное.
Выигрывает тот, кто первым напишет однозначное число. Кто из них может выиграть, как бы ни играл соперник?
Миша стоит в центре круглой лужайке радиуса 100 метров. Каждую минуту он делает шаг длиной 1 метр. Перед каждым шагом он объявляет направление, в котором хочет шагнуть. Катя имеет право заставить его сменить направление на противоположное. Может ли Миша действовать так, чтобы в какой-то момент обязательно выйти с лужайки, или Катя всегда сможет ему помешать?
Дана клетчатая полоса 1×N. Двое играют в следующую игру. На очередном ходу первый игрок ставит в одну из свободных клеток крестик, а второй – нолик. Не разрешается ставить в соседние клетки два крестика или два нолика. Проигрывает тот, кто не может сделать ход.
Кто из игроков может всегда выиграть (как бы ни играл его соперник)?
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 278]