ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 278]
Алиса и Базилио играют в следующую игру; из мешка, первоначально содержащего 1331 монету, они по очереди берут монеты, причем первый ход делает Алиса и берет 1 монету, а далее при каждом следующем ходе игрок берет (по своему усмотрению) либо столько же монет, сколько взял другой игрок последним ходом, либо на одну больше. Проигрывает тот, кто не может сделать очередной ход по правилам. Кто из игроков может обеспечить себе выигрыш независимо от ходов другого?
Кто — начинающий или его соперник — победит в этой игре, как бы ни играл его партнёр? Рассмотрите случаи: а) У каждого по две горошины; б) У каждого по три горошины; в) У каждого по десять горошин; г) Общий случай: у каждого по N горошин.
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 278] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|