|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В трапеции ABCD даны основания AD = 8 и BC = 4. На продолжении стороны BC выбрана такая точка M, что прямая AM отсекает от трапеции треугольник, площадь которого в четыре раза меньше площади трапеции. Найдите CM. Укажите все точки плоскости (x, y), через которые проходит хотя бы одна кривая семейства y = p² + (2p – 1)x + 2x². |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]
При каких значениях m уравнения mx – 1000 = 1001 и 1001x = m – 1000x имеют общий корень?
Укажите все точки плоскости (x, y), через которые проходит хотя бы одна кривая семейства y = p² + (2p – 1)x + 2x².
Рассматриваются квадратичные функции y = x² + px + q, для которых p + q = 2002.
При каких a уравнение
Квадратный трехчлен y = ax² + bx + c не имеет корней и а + b + c > 0. Найдите знак коэффициента с.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|