|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Миша мысленно расположил внутри данного круга единичного радиуса выпуклый многоугольник, содержащий центр круга, а Коля пытается угадать его периметр. За один шаг Коля указывает Мише какую-либо прямую и узнает от него, пересекает ли она многоугольник. Имеет ли Коля возможность наверняка угадать периметр многоугольника: а) через 3 шага с точностью до 0,3; б) через 2007 шагов с точностью до 0,003? Плоскость раскрашена в три цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1. Три сферы, радиусы которых равны Докажите следующие формулы: an+1 – bn+1 = (a – b)(an + an–1b + ... + bn); a2n+1 + b2n+1 = (a + b)(a2n – a2n–1b + a2n–2b2 – ... + b2n). |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 267]
Докажите следующие формулы: an+1 – bn+1 = (a – b)(an + an–1b + ... + bn); a2n+1 + b2n+1 = (a + b)(a2n – a2n–1b + a2n–2b2 – ... + b2n).
Найдите все пары простых чисел, разность квадратов которых является простым числом.
Сколькими способами число 1979 можно представить в виде разности двух квадратов натуральных чисел?
Какие остатки могут получиться при делении n³ + 3 на n + 1 при натуральном n > 2?
Докажите, что числа а) 232001 + 1; б) 232001 – 1 – составные.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 267] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|