ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Два мудреца играют в следующую игру. Выписаны числа 0, 1, 2,..., 1024. Первый мудрец зачёркивает 512 чисел (по своему выбору), второй зачёркивает 256 из оставшихся, затем снова первый зачёркивает 128 чисел и т.д. На десятом шаге второй мудрец зачёркивает одно число; остаются два числа. После этого второй мудрец платит первому разницу между этими числами. Как выгоднее играть первому мудрецу? Как второму? Сколько уплатит второй мудрец первому, если оба будут играть наилучшим образом? (Ср. с задачей 78710 и с задачей 78716.)

Вниз   Решение


В колбе находится колония из n бактерий. В какой-то момент внутрь колбы попадает вирус. В первую минуту вирус уничтожает одну бактерию, и сразу же после этого и вирус, и оставшиеся бактерии делятся пополам. Во вторую минуту новые два вируса уничтожают две бактерии, а затем и вирусы, и оставшиеся бактерии снова делятся пополам, и т.д. Наступит ли такой момент времени, когда не останется ни одной бактерии?

ВверхВниз   Решение


Предположим, что цепные дроби   сходятся. Согласно задаче 61330, они будут сходиться к корням многочлена  x² – px + q = 0.  С другой стороны к тем же корням будут сходиться и последовательности, построенные по методу Ньютона (см. задачу 61328):   xn+1 = xn = .  Докажите, что если x0 совпадает с нулевой подходящей дробью цепной дроби α или β, то числа x1, x2, ... также будут совпадать с подходящими дробями к α или β.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 267]      



Задача 76501

Тема:   [ Разложение на множители ]
Сложность: 2+
Классы: 8,9

Разделить  a128b128  на  (a + b)(a² + b²)(a4 + b4)(a8 + b8)(a16 + b16)(a32 + b32)(a64 + b64).

Прислать комментарий     Решение


Задача 76506

Тема:   [ Разложение на множители ]
Сложность: 2+
Классы: 10,11

Разделить  a2kb2k  на  (a + b)(a² + b²)(a4 + b4)...(a2k–1 + b2k–1).

Прислать комментарий     Решение

Задача 78290

Темы:   [ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 8,9,10

Дано число 100...01; число нулей в нём равно 1961. Докажите, что это число – составное.

Прислать комментарий     Решение

Задача 86514

Темы:   [ Разложение на множители ]
[ Графики и ГМТ на координатной плоскости ]
[ Уравнения с модулями ]
Сложность: 2+
Классы: 8,9

На координатной плоскости изобразите все точки, координаты которых являются решениями уравнения:  y² – |y| = x² – |x|.

Прислать комментарий     Решение

Задача 30595

Темы:   [ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 3-
Классы: 7,8,9

Докажите, что
  а)  43101 + 23101  делится на 66.
  б)  an + bn  делится на  a + b,  если n – нечётное число.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 267]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .