|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Сумма положительных чисел a, b, c равна 3. Докажите, что Окружность S с центром O на основании BC равнобедренного треугольника ABC касается равных сторон AB и AC. На сторонах AB и AC взяты точки P и Q так, что отрезок PQ касается окружности S. Докажите, что тогда 4PB . CQ = BC2. В треугольнике ABC проведены биссектрисы AD и BE. Найдите величину угла C, если известно, что AD . BC = BE . AC и AC Составьте систему, состоящую из двух линейных уравнений, для которой строки (1, 1, 1, 1) и (1, 2, 2, 1) служат решениями. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]
На доске записан ряд из чисел и звёздочек: 5, *, *, *, *, *, *, 8. Замените звёздочки числами так, чтобы сумма каждых трёх чисел, стоящих подряд, равнялась 20.
На доске написано несколько положительных чисел, каждое из которых равно полусумме остальных. Сколько чисел написано на доске?
Десять человек сидят за круглым столом. Сумма в десять долларов должна быть распределена среди них так, чтобы каждый получил половину от той суммы, которую два его соседа получили вместе. Однозначно ли это правило задает распределение денег?
Составьте систему, состоящую из двух линейных уравнений, для которой строки (1, 1, 1, 1) и (1, 2, 2, 1) служат решениями.
Прямые у = kx + b, у = 2kx + 2b и у = bx + k различны и пересекаются в одной точке. Какими могут быть ее координаты?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|